在△ABC中,角A,B,C的对边分别为a,b,c,若a 2 +b 2 =4a+2b-5,且a 2 =b 2 +c 2 -bc,则sinB的值为___

2025-06-26 19:03:43
推荐回答(1个)
回答1:

将a 2 +b 2 =4a+2b-5变形得:(a 2 -4a+4)+(b 2 -2b+1)=0,即(a-2) 2 +(b-1) 2 =0,
∴a-2=0,b-1=0,即a=2,b=1,
∵a 2 =b 2 +c 2 -bc,即b 2 +c 2 -a 2 =bc,
∴cosA=
b 2 + c 2 - a 2
2bc
=
bc
2bc
=
1
2

∵A为三角形的内角,
∴sinA=
1-co s 2 A
=
3
2

由正弦定理
a
sinA
=
b
sinB

得:sinB=
bsinA
a
=
3
2
2
=
3
4

故答案为:
3
4