(1)设A(x1,y1),B(x2,y2)
∵Q(4,1)是AB中点,
∴
=4,
x1+x2
2
=1,
y1+y2
2
∴x1+x2=8,y1+y2=2,
又∵A(x1,y1),B(x2,y2)在y2=8x上,
∴y12=8x1,y22=8x2,
两式相减,得:y22-y12=2(y2-y1)=8(x2-x1)
得到
=4,
y2?y1
x2?x1
∴直线AB的斜率k=4,
∵直线经过Q(4,1),
∴直线AB的方程为y-1=4(x-4),
整理,得AB所在的直线方程:4x-y-15=0.
(2)联立
,
y2=8x 4x?y?15=0
消去y,并整理得16x2-128x+225=0,
x1+x2=
=8,x1 ?x2=128 16
,225 16
∴|AB|=
=
(1+16)(64?4×
)225 16
.
527
2
∴弦AB的长为
.
527
2