解:(1) 设公差为q,则a2 = a1+q = 3+q; a4 = a1+3q = 3+3q;
由成等比 有 1/(3+q)^2 = 1/3 * 1/(3+3q) 由q != 0 知道 q = 3;
an = a1+(n-1)*3 = 3n
sn = (a1+an)*n/2 = (n+1)n*3/2;
(2) 1/sn = 2/3 *(1/n - 1/(n+1) )
故An = 2/3(1 -1/2 +1/2-1/3 +...+1/n - 1/(n+1) ) = 2/3 (1-1/(n+1))