证明三角形中面积s=1⼀2r^2(sin2a+sin2b+sin2c),r是外接圆半径

2025-06-26 23:27:54
推荐回答(1个)
回答1:

证明:如图所示:

S△ABC=S△OAC+S△OAB+S△OBC

=1/2*OA*OC*sin∠AOC+1/2*OA*OB*sin∠AOB+1/2*OB*OC*sin∠BOC

=1/2r²sin2B+1/2r²sin2C+1/2r²sin2A

=1/2r²(sin2A+sin2B+sin2C)