整数数列{an}的前n项和Sn满足Sn=1⼀4(an+1)^2,求数列{an}的通项公式

2025-06-27 04:35:57
推荐回答(1个)
回答1:

a₁=S₁=1/4(a₁+1)²,解得a₁=1
an=Sn-Sn-1=1/4(an+an-1 +2)(an-an-1)
4an/(an-an-1)=an+an-1 +2
2(an+an-1)/(an-an-1)=an+an-1
an+an-1=0或an-an-1=2
所以{an}的通项公式是(-1)∧(n+1)或an=2n-1