高数幂级数求和函数跪求

高数幂级数求和函数跪求跪求第九题
2025-06-23 20:35:17
推荐回答(1个)
回答1:

解:设S(x)=∑(x^n)/n,两边由S(x)对x求导,有S'(x)= ∑x^(n-1)。 当|x|<1时,S'(x)=1/(1-x)。
两边从0到x积分,原式=S(x)=-ln(1-x)。
对S(x),当x=-1时,是交错级数,满足莱布尼茨判别法的条件,收敛。故,∑[(-1)^(n-1)]/n=- ∑[(-1)^n]/n=-s(-1)=ln2。
供参考。