(1)由已知得f′(x)=a+lnx+1,
故f′(e)=3,
即a+lne+1=3,
∴a=1.
(2)∵g(x)=
+x+xlnx x
?k9 2(x+1)
=1+lnx+
?k(x>0),9 2(x+1)
∴g′(x)=
?1 x
=9 2(x+1)2
,(x>0)(2x?1)(x?2) 2x(x+1)2
令g′(x)=0,解得x=
,或x=2,1 2
列表如下
x | (0,
|
| (
| 2 | (2,+∞) | ||||||
g′(x) | + | 0 | - | 0 | + | ||||||
g(x) | ↑ | 极大值 4-ln2-k | ↓ | 极小值
| ↑ |
|
|