y'' + y = xe^(- x)
特征方程为r² + 1 = 0即r = ± i
齐次解yc = C₁sinx + C₂cosx
设特解yp = (Ax + B)e^(- x)
(yp)' = e^(- x) [(A - B) - Ax]
(yp)'' = e^(- x) [(- 2A + B) + Ax]
全部代入原方程,
e^(- x) [(- 2A + B) + Ax] + (Ax + B)e^(- x) = xe^(- x)
[(- 2A + B) + Ax] + (Ax + B) = x
2A = 1 ==> A = 1/2
- 2A + 2B = 0 ==> B = A = 1/2
特解yp = (1/2)(x + 1)e^(- x)
所以通解为y = C₁sinx + C₂cosx + (1/2)(x + 1)e^(- x)