过抛物线y 2 =2px(p>0)焦点F的直线l与抛物线交于A、B两点,且|AF|=3|BF|,那么直线l的斜率为(  )

2025-06-27 14:30:53
推荐回答(1个)
回答1:

设抛物线y 2 =2px(p>0)的准线为l′:x=-
p
2
/picurl?url=https%3A%2F%2Fiknow-pic.cdn.bcebos.com%2F7aec54e736d12f2e29b074d14cc2d562843568ce%3Fx-bce-process%3Dimage%2Fquality%2Cq_85
如图所示,
①当直线AB的倾斜角为锐角时,
分别过点A,B作AM⊥l′,BN⊥l′,垂足为M,N.
过点B作BC⊥AM交于点C.
则|AM|=|AF|,|BN|=|BF|.
∵|AF|=3|BF|=
3
4
|AB|,
∴|AM|-|BN|=|AC|=|AF|-|BF|=
1
2
|AB|,
在Rt△ABC中,由|AC|=
1
2
|AB|
,可得∠BAC=60°.
∵AM x轴,∴∠BAC=∠AFx=60°.
k AB =tan6 0 ° =
3

②当直线AB的倾斜角为钝角时,可得 k AB =-
3

综上可知:直线l的斜率为 ±
3

故选:D.