已知函数f(x)=x+1x,g(x)=1x(x>0).(Ⅰ)判断并证明函数f(x)在[1,+∞)上的单调性;(Ⅱ)设

2025-06-26 16:00:17
推荐回答(1个)
回答1:

(Ⅰ)f(x)在[1,+∞) 上是增函数;…(1分)
证明如下:在[1,+∞)上任取x1,x2且x1<x2
∴f(x1)=x1+

1
x1
,f(x2)=x2+
1
x2

∴f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2

=(x1-x2)+(
1
x1
-
1
x2

=(x1-x2)?
x1x2?1
x1x2

∵1<x1<x2,∴x1-x2<0,x1x2>1,x1x2-1>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2);
∴f(x)在[1,+∞) 上是增函数;…(4分)
(Ⅱ)|
AP
|=
(a?x)2+(a?
1
x
)
2
=
(x+
1
x
)
2
?2a(x+
1
x
)+2a2?2

令t=x+
1
x
,由(Ⅰ)知,f(x)在[1,+∞)上是增函数,
同理可得f(x)在(0,1]上是减函数;
∴t≥2,
(x+
1
x
)
2
-2a(x+
1
x
)+2a2-2=t2-2at+2a2-2=(t-a)2+a2-2(t≥2);
若a<2,当t=2时(t-a)2++a2-2有最小值2(a-1)2