(Ⅰ)f(x)在[1,+∞) 上是增函数;…(1分)
证明如下:在[1,+∞)上任取x1,x2且x1<x2,
∴f(x1)=x1+
,f(x2)=x2+1 x1
;1 x2
∴f(x1)-f(x2)=(x1+
)-(x2+1 x1
)1 x2
=(x1-x2)+(
-1 x1
)1 x2
=(x1-x2)?
;x1x2?1 x1x2
∵1<x1<x2,∴x1-x2<0,x1x2>1,x1x2-1>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2);
∴f(x)在[1,+∞) 上是增函数;…(4分)
(Ⅱ)|
|=AP
=
(a?x)2+(a?
)2
1 x
,
(x+
)2?2a(x+1 x
)+2a2?21 x
令t=x+
,由(Ⅰ)知,f(x)在[1,+∞)上是增函数,1 x
同理可得f(x)在(0,1]上是减函数;
∴t≥2,
∴(x+
)2-2a(x+1 x
)+2a2-2=t2-2at+2a2-2=(t-a)2+a2-2(t≥2);1 x
若a<2,当t=2时(t-a)2++a2-2有最小值2(a-1)2;
∴