sin(π-θ)=4/5(π/2<θ<π)
sinθ=4/5 cos2θ=1-(4/5)^2=9/25
tanθ=-4/3
tan(θ-π/4)=-4/3-1/1-4/3=-7
cos(2θ-π/3)=9/25*1/2+24/25*√3/2=9+24√3/50
(1)tan(θ-π/4)=(tanθ-tanπ/4)/(1+tanθtanπ/4)=(tanθ-1)/(tanθ+1)
因为sinθ=4/5,所以cosθ=-3/5,所以tanθ=-4/3,所以原式=-7
(2)cos(2θ-π/3)=cos2θcosπ/3+sin2θsinπ/3=(1-2sin^2θ)/2+sqrt3*sinθcosθ=-(7+24sqrt3)/50
七分之一