二重积分的问题

2025-06-28 07:01:05
推荐回答(2个)
回答1:

(1)没错,(2)有错。
将区域D分成四个象限(这个词应该不用解释了吧),则由于原点对称的原来
象限1上的积分与象限3上的积分相等,同理,象限2与象限4上的积分相等。但是原点对称不能保证象限1与象限2上的积分相等(实际上这两个象限上的积分结果互为相反数),所以结果为0

回答2:

(1)、(2)没有矛盾,都是正确的,
但是你叙述结论时没有明确 考虑到 积分区域,

(2)是关于原点的偶函数,也有:I=2∫∫f(x,y)dσ
但注意:此时 积分区域已并不是 D:X^2+Y^2小于等于1,而是关于原点对称两个半圆中的一个了。而在此半圆上,如上半圆的积分值确是零。