an等差数列,故an=a1+(n-1)*d=a3+(n-3)*da3=8,故a1=a3-2*d=8-2*da5=a3+2*d=8+2*da17=a3+14*d=8+14*da1 a5 a17等比数列有a1*a17=a5^2将上面三式代入,得(8-2*d)*(8+14*d)=(8+2*d)^2解得d=2或d=0(舍)所以an=a3+(n-3)*d=2*n+2a1=4a25=2*25+2=52S25=(a1+a25)*25/2=(4+52)*25/2=700