已知直线l:y=kx+m交抛物线C:x 2 =4y于相异两点A,B.过A,B两点分别作抛物线的切线,设两切线交于M点.

2025-06-27 08:04:14
推荐回答(1个)
回答1:

(I)设A(x 1 ,y 1 ),B(x 2 ,y 2 ),M(x 0 ,y 0 ),
y 1 =
x 21
4
y 2 =
x 22
4

y=
x 2
4

y′=
x
2

∴切线方程: y- y 1 =
x 1
2
(x- x 1 ),y- y 2 =
x 2
2
(x- x 2 )

两式联立且有 y 1 =
x 21
4
y 2 =
x 22
4

可得
x 0 =
x 1 + x 2
2
y 0 =
x 1 x 2
4

将y=kx+m代入x 2 =4y得x 2 -4kx-4m=0
由题可知△=16(k 2 +m)>0且x 1 +x 2 =4k,x 1 x 2 =-4m
∴x 0 =2k,y 0 =-2m
即M(2k,-2m)
当M(2,-1)时,则2k=2,-2m=-1
∴k=1,m=
1
2

∴直线l的方程为y=x+
1
2

(Ⅱ)∵ |AB|=
( x 1 - x 2 ) 2 + ( y 1 - y 2 ) 2
=
1+ k 2
( x 1 + x 2 ) 2 -4 x 1 x 2
=
1+ k 2
16( k 2 +m)
=4

1+ k 2
k 2 +m
=1
M到AB的距离为 h=
|2 k 2 +2m|
1+ k 2
=
2( k 2 +m)
1+ k 2

△ABM面积 S=
1
2
|AB|?h=4
k 2 +m
1+ k 2
=4
1
(1+ k 2 )
3
2
≤4

当k=0时,△ABM面积的最大值为4.