f(x)=(x+m)/(x²+nx+1)∵f(x)是(-1,1)上的奇函数∴f(-0)=-f(0)∴f(0)=0∴f(0)=m/1=0∴m=0∴f(x)=x/(x²+nx+1)∴f(-x)=-x/(x²-nx+1)∵f(-x)=-f(x)即-x/(x²-nx+1)=-x/(x²+nx+1)∴x²-nx+1=x²+nx+1∴2nx=0∴n=0综上,m=0,n=0