延长CE、BA,相交于点F。(∠1和∠2分别是∠ABD和∠CBD)在△BCE和△BFE中,∠BEC = 90°= ∠BEF ,BE为公共边,∠CBE = ∠FBE ,所以,△BCE ≌ △BFE ,可得:CE = EF ,即有:CF = 2CE ;在△CAF和△BAD中,∠ACF = 90°-∠AFC = ∠ABD ,AC = AB ,∠CAF = 90°= ∠BAD ,所以,△CAF ≌ △BAD ,可得:CF = BD ,则有:BD = 2CE 。
BD=2CE