利用等比数列的前n项和公式的推导方法,计算 S n = 3 2 + 5 4 + 7 8 +

2025-06-28 08:59:02
推荐回答(1个)
回答1:

S n =
3
2
+
5
4
+
7
8
+
+
2n+1
2 n
,①
1
2
S n
=
3
4
+
5
8
+
7
16
+…+
2n-1
2 n
+
2n+1
2 n+1
,②
①-②,得
1
2
S n
=
3
2
+
2
4
+
2
8
+
2
16
+…+
2
2 n
-
2n+1
2 n+1

=
1
2
+2(
1
2
+
1
4
+
1
8
+
1
16
+…+
1
2 n
)-
2n+1
2 n+1

=
1
2
+2
×
1
2
(1-
1
2 n
)
1-
1
2
-
2n+1
2 n+1

=
1
2
+2-
2
2 n
-
2n+1
2 n+1

∴S n =5-
4
2 n
-
2n+1
2 n
=5-
2n+5
2 n

故答案为:5-
2n+5
2 n