∵f(x)∈[0,2] ∴(mx^2+8x+n)/x^2+1∈[1,9]设y=(mx^2+8x+n)/x^2+1,即1<=y<=9∴(y-m)x^2-8x+(y-n)>=0因为x∈R 设y-m≠0∴△=64-4(y-m)(y-n)>=0y^2-(m+n)y+(mn-16)<=0由1<=y<=9知,1,9为方程的两根∴m+n=1+9 mn-16=1*9∴m=n=5若y-m=0,即y=m=5时,对应的x=0符合条件所以m=n=5