如图①
∵AD⊥BC,BE⊥AC,
∴∠BDF=∠ADC=∠BEC=90°,
∴∠C+∠CBE=90°,∠C+∠CAD=90°,
∴∠CBF=∠CAD,
在△BDF和△ADC中
,
∠DBF=∠CAD ∠BDF=∠ADC BF=AC
∴△BDF≌△ADC(ASA),
∴BD=AD,
∵∠ADB=90°,
∴∠ABC=∠DAB=45°,
即∠ABC=45°,
②如图2,
AD⊥BC,BE⊥AC,
∴∠BDF=∠ADC=∠BEC=90°,
∴∠C+∠CAD=90°,∠C+∠CBE=90°,
∴∠CBE=∠CAD,
∵∠DBF=∠CBE,
∴∠DBF=∠CAD,
在△BDF和△ADC中
,
∠DBF=∠CAD ∠BDF=∠ADC BF=AC
∴△BDF≌△ADC(ASA),
∴BD=AD,
∵∠ADB=90°,
∴∠ABD=∠DAB=45°,
即∠ABC=180°-45°=135°,
故答案为:45°或135°.