二阶微分方程y″+py′+qy=cos(ωx+βx눀)怎么设特解?特解是什么形式的

2025-06-27 11:48:09
推荐回答(1个)
回答1:

(1)y”+3y’+2y=xe^-x
特解
y*=ax+b(这是错的,最起码得有个e^-x吧?)
(2)y”+3y’+2y=(x²
+
1)e^-x
特解y*=x(ax²+bx+c)e^-x
-------------------------------
1、xe^-x前的多项式为x,所以设qm(x)是qm(x)=ax+b,由于-1是特征方程的单根,所以特解为
y*=x(ax+b)e^(-x)
2、(x²+1)e^-x前的多项式为二次,所以设qm(x)是qm(x)=ax²+bx+c,由于-1是特征方程的单根,所以特解为y*=x(ax²+bx+c)e^-x
把特解带入原微分方程,待定系数法求出参数a、b、c。