证明:(1)∵a1=1,an+1=an+
,∴an>0.a1=tanθ1,∵θ1∈(0,
an2+1
),∴θ1=π 2
.π 4
∴an+1=tanθn+1=tanθn+
=
tan2θn+1
=tan(1+sinθn
cosθn
+π 4
),θn 2
∵θn+1∈(0,
),θn∈(0,π 2
),∴θn+1=π 2
θn+1 2
,∴θn+1-π 4
=π 2
(θn-1 2
).π 2
∴数列{θn-
}是等比数列.π 2
(2)∵数列{θn-
}是等比数列,∴θn-π 2
=(π 2
)n-1(-1 2
),θn=π 4
-(π 2
)n-1(-1 2
π