已知数列{an}满足a1=1,an+1=an+an2+1,令an=tanθn(0<θn<π2),求证:(1)数列{θn-π2}是等比数列

2025-06-27 00:21:18
推荐回答(1个)
回答1:

证明:(1)∵a1=1,an+1=an+

an2+1
,∴an>0.a1=tanθ1,∵θ1∈(0,
π
2
),∴θ1=
π
4
.

an+1=tanθn+1=tanθn+
tan2θn+1
=
1+sinθn
cosθn
=tan(
π
4
+
θn
2
)

θn+1∈(0,
π
2
),θn∈(0,
π
2
),∴θn+1=
1
2
θn+
π
4
,∴θn+1-
π
2
=
1
2
(θn-
π
2
)

∴数列{θn-
π
2
}
是等比数列.
(2)∵数列{θn-
π
2
}
是等比数列,∴θn-
π
2
=(
1
2
)n-1(-
π
4
),θn=
π
2
-(
1
2
)n-1(-
π