1.设B为60°,
C为钝角,C大于等于90°,A小于等于30°,(内角和为180°,)
角C为钝角,因此c最大,角A最小,a最小,
(由大角对长边,小角对短边可知,)
由正弦定理,c/sinC=a/sinA,C=2π/3-A
所以c/sin(2π/3-A)=a/sinA,
得c/a=sin(2π/3-A)/sinA
整理得,根号3/2tanA+1/2
由0所以1/tanA>根号3,
所以上式c/a>3/2+1/2=2
2。cos²(A/2)=b+c/2c,得(cosA+1)/2=b+c/2c,得cosA=b/c=b²+c²-a²/2bc得 a²+b²=c²所以为直角三角形,二倍角公式得的cos²(A/2)=b+c/2c,得(cosA+1)/2=b+c/2c,
3.设abc,c=2根号三 B=30°,
面积S=acsinB/2=根号3,
得a=2,由cosB=a²+c²-b²/2ac=(根号3)/2
得b=2
第一题考察极端.左极端(为直角三角形.)m=2,右极端为m→+∞,所以选B
第二题看不懂哎.到底是二分之A还是cosA平方再除以2...
第三题.S=(AB×BC×sin30°)/2=根号3,∴BC=2.
由于余弦定理;AC=2