连接CD∵△ABC是等边三角形∴AC=BC ∠CAB=∠CBA=∠ACB=60°∵AD=BD∴∠DAB=∠DBA∴ ∠CAB-∠DAB=∠CBA-∠DBA即∠CAD=∠CBD在△CAD和△CBD中∵AD=BD ∠CAD=∠CBD CD=CD∴△CAD全等于△CBD∴∠ACD=∠BCD=1/2 ∠ACB=30°在△DBP和△DBC中∵BP=BC ∠DBP=∠DBC BD=BD∴△DBP全等于△DBC∴∠P=∠BCD=30°