已知sin x⼀2-2cos x⼀2=0. (1)求tan x的值。 (2)求(cos2x)⼀((

2025-06-26 18:53:28
推荐回答(1个)
回答1:

解:
(1)
sin(x/2)-2cos(x/2)=0
tan(x/2)=sin(x/2)/cos(x/2)=½
tanx=2tan(x/2)/[1-tan²(x/2)]
=2·½/(1-½²)
=4/3
(2)
cos(2x)/[√2cos(π/4 +x)sinx]
=(cos²x-sin²x)/[√2(cosxcosπ/4-sinxsinπ/4)sinx]
=(cos²x-sin²x)/[√2·(√2/2)(cosx-sinx)sinx]
=(cos²x-sin²x)/(sinxcosx-sin²x)
=(1-tan²x)/(tanx -tan²x)
=[1-(4/3)²]/(4/3 -(4/3)²]
=7/4