高中数学 已知奇函数f(x)是定义在【—1,1】上的减函数,若f(a^2-a-1)+f(4a-5)>0,求实数a的取值范围

要详细过程,谢谢
2025-06-27 10:04:59
推荐回答(4个)
回答1:

由定义域可得-1≤a^2-a-1≤1....⑴
-1≤4a-5≤1.............................⑵
由奇函数性质f(4a-5)=-f(5-4a)所以f(a^2-a-1)>f(5-4a)
由减函数性质可得a^2-a-1<5-4a......⑶
综合三式解得1≤a<(√33-3)/2

回答2:

-1<=4a-5<=1,1<=a<=3/2,
-1<=a^2-a-1<=1,1<=a<=2,
故1<=a<=3/2.
f(a^2-a-1)>-f(4a-5)=f(5-4a),[奇,减函数]
a^2-a-1<5-4a,a<[(33)^(1/2)-3]/2<[6-3]/2=3/2,
1<=a<[(33)^(1/2)-3]/2

回答3:

首先,由定义域在【-1,1】之间,可得:-1= -1=<4a-5=<1,(2)
又,f(x)为奇函数,所以f(4a-5)=-f(5-4a),代入原式得:f(a^2-a-1)>f(5-4a)

回答4:

f(a^2-a-1)+f(4a-5)>0 → f(a^2-a-1) >-f(4a-5)= f(5-4a)
得不等式-1解出1