a5=a1+4d,a17=a1+16d
因为a1,a5,a17成等比数列
所以(a1+4d)^2=a1*(a1+16d)
故(a1)^2+8a1*d+16d^2=(a1)^2+16a1*d
即2d^2=a1*d
因为d≠0
所以a1=2d
故(a1+a5+a17)/(a2+a6+a18)
=[2d+(2d+4d)+(2d+16d)]/[(2d+d)+(2d+5d)+(2d+17d)]
=26d/29d
=26/29
a1*a17=(a5)^2
即a1(a1+16d)=(a1+4d)^2
a1=2d
代入式子计算即可
a1*(a1+16d)=(a1+4d)²
a1=2d
然后代回去
=26/29