过D作DG//AC,交BC于G∵ AB=AC∴ ∠B=∠ACB∵ DG//AC∴∠DGB=∠ACB∴ ∠B=∠DGB∴ BD=DG∵ DG//AC∴∠GDE=∠EFC,∠DGE=∠FCE∵ DG=CE∴△DGE≌△FCE∴DF=EF
过D作OD‖AC交BC于O则∠ODF=∠E,∠DOB=∠ACB又∵AB=AC∴∠B=∠ACB∴∠DOB=∠B∴DO=DB=CE∵DO=CE,∠ODF=∠E,∠DFO=∠CFE∴△ODF≌△CEF∴DF=EF