可延长DE至F,使EF=BC,可得△ABC≌△AEF,连AC,AD,AF,可将五边形ABCDE的面积转化为两个△ADF的面积,进而求出结论.解答:解:延长DE至F,使EF=BC,连AC,AD,AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
由题中条件可得Rt△ABC≌Rt△AEF,△ACD≌△AFD,
∴SABCDE=2S△ADF=2× •DF•AE=2× ×2×2=4.
故答案为:4.
延长be之点f,作ef=bc。在△abc,△aef中(bc=ef,∠abc=∠aef,ab=ae)所以全等,所以ac=af。因为cd=bc+de=1 ,所以cd=ef+de=1.s五边形abcdef=2△adf=1.