y=1+xe^y的2阶导数
解:y′=e^y+x(e^y)y′
故y′=(e^y)/(1-xe^y)
y″=[(1-xe^y)(e^y)y′+(e^y)(e^y+xy′e^y)]/(1-xe^y)²=(e^y)[(1-xe^y)y′+(e^y)(1+xy′)]/(1-xe^y)²
将y′=e^y+x(e^y)y′代入即得y″,很烦,自己代吧!
y'=dy/dx=(1+xe^y)'=(xe^y)'=x'e^y+x(e^y)'=e^y+(xe^y)y'
即(1-xe^y)y'=e^y
那么y'=(e^y)/(1-xe^y)
y"=[(e^y)/(1-xe^y)]'
=[y'e^y(1-xe^y)-(0-(e^y+(xe^y)y'))]/[(1-xe^y)^2]
=[y'e^y(1-xe^y)+e^y+(xe^y)y']/[(1-xe^y)^2]
=[(e^y)^2(1-xe^y)+x(e^y)^2+e^y(1-xe^y)]/[(1-xe^y)^2]
希望可以帮到你!