(I)设等差数列{an}的公差为d,则an=a1+(n-1)d由a1=1,a3=-3,可得1+2d=-3,解得d=-2,从而,an=1+(n-1)×(-2)=3-2n;(II)由(I)可知an=3-2n,所以Sn= n[1+(3?2n)] 2 =2n-n2,进而由Sk=-35,可得2k-k2=-35,即k2-2k-35=0,解得k=7或k=-5,又k∈N+,故k=7为所求.