证明锐角三角形内角正弦值之和大于余弦值之和

用初中知识
2025-06-27 12:57:40
推荐回答(3个)
回答1:

A+B>90度,A>90度-B,sinA>sin(90度-B)=cosB
同理可证sinB>cosC,sinC>cosA
三者相加即可

回答2:

在锐角三角形中有如下性质:45°<角<90°,则2分之根号20

回答3:

证明:设A≤B≤C,由三角形内角和=180°可知90°> C≥60°
∴ sinC>cosC
由和差化积公式:
sinA+sinB-(cosA+cosB)
=2sin【(A+B)/2】cos【(A-B)/2】-2cos【(A+B)/2】cos【(A-B)/2】
=2cos【(A-B)/2】{sin【(A+B)/2】-cos【(A+B)/2】}
∵ 90°∴ 45°<(A+B)/2≤60°,
∴ cos((A+B)/2) ≥1/2>0,
即 sin((A+B)/2)>cos((A+B)/2)
又 cos【(A-B)/2】>0
∴ sinA+sinB>cosA+cosB
综上sinA+sinB+sinC>cosA+cosB+cosC