有两种方法。
一、把行列式Dn按照第一行展开=2Dn-1-Dn-2
所以Dn-Dn-1=Dn-1-Dn-2=...=D2-D1=1
又因为D1=2
即可得Dn通项公式Dn=n+1
二、把第一行的(-1/2)倍加到第二行上,然后把第二行的(-2/3倍)加到第三行上……最后把倒数第二行的(-(n-1)/n)倍加到最后一行。
这样Dn就变为一个上三角行列式,
Dn=2*(3/2)*(4/3)......*((n+1)/n)=n+1
这个其实是线性代数很常见的一道题。码字太累。。望采纳
是不是这样的
ab 00000000
cd 00000000
00 ab 000000
00 cd 000000
0000 ab 0000
0000 cd 0000
000000 ab 00
000000 cd 00
00000000 ab
00000000 cd
如果照你说就是第三列的数都为0
不可能吧