已知:向量a=(sinx,1),b=(cosx,-1⼀2) 求函数f(x)=a·(a-b)的最大值

过程详细的加分!!!!!!
2025-06-27 06:50:09
推荐回答(2个)
回答1:

解:a-b=(sinx-cosx,3/2)
所以:f(x)=sinx(sinx-cosx)+3/2
=(sinx)^2-sinxcosx+3/2
=(1-cos2x)/2-sin2x/2+3/2
=1/2*(sin2x-cos2x)+2
=√2/2*sin(2x-π/4)+2
所以,函数f(x)=a·(a-b)的最大值为:2+√2/2

回答2:

f(x)
=a.(a-b)
=(sinx,1).(sinx-cosx,3/2)
=(sinx)^2-sinxcosx +3/2
= (1/2)(1-cos2x) -(1/2)sin2x+3/2
=2 -(√2/2)(√2/2)(cos2x+sin2x)
=2- (√2/2)cos(2x-π/4)
max f(x) = 2+√2/2