已知tan(α+π⼀4)=1⼀3,则1⼀sinαcosα等于

2025-06-26 22:00:11
推荐回答(1个)
回答1:

tan(α+π/4)=1/3,
即(tanα+tanπ/4)/(1-tanαtanπ/4)=1/3,
(tanα+1)/(1-tanα)=1/3,
所以tanα=-1/2.

1 /(sinαcosα)=(sin²α+cos²α)/(sinαcosα)
分子分母同除以cos²α可得:
=(tan²α+1)/(tanα)
=-5/2.