解:
∵BD平分∠ABC
∴∠ABD=∠CBD=∠ABC/2
∵∠ACE=180-∠ACB,CD平分∠ACE
∴∠DCE=∠ACE/2=90-∠ACB/2
∵∠DCE=∠D+∠CBD=∠D+∠ABC/2
∴90-∠ACB/2=∠D+∠ABC/2
∴∠D=90-(∠ABC/2+∠ACB/2)
=90-(∠ABC+∠ACB)/2
=90-(180-∠A)/2
=∠A/2
∵∠D=40
∴40=∠A/2
∴∠A=80°
角BCD=角BCA+(A+B)/2
B/2+C+(A+B)/2+40=A+B+C
A=80