连结OA,OC,OB
∵∠OAP=∠OBP=90º
∴∠AOB=360º-90×2-40=140º
易证⊿AOD≌⊿COD,⊿BEO≌⊿CEO
∴∠AOD=∠COD,∠BOE=∠COE
∴∠DOE=1/2∠AOB=70º
解:连接OA、OB、OC
∵PA、PB分别切圆O于A、B
∴∠PAO=∠PBO=90
∵∠AOB+∠P+∠PAO+∠PBO=360, ∠P=40
∴∠AOB=360-(∠P+∠PAO+∠PBO)=140
∵DE切圆O于C
∴AD=CD,BE=CE
∵OA=OB=OC
∴△AOD≌△COD,△BOE≌△COE (SSS)
∴∠AOD=∠COD=∠AOC/2, ∠BOE=∠COE=∠BOC/2
∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)/2=∠AOB/2=70°