∵a²+½b²=1∴b²=2-2a²∵a>b>0∴a*根号(1+b²)=(√2/4)*[2√2a*根号(3-2a²)]≦(√2/4)*{(√2a)²+[根号(3-2a²)]²}=3√2/4∴当2a²=3-2a²即a=√3/2,有b=√2/2,a*根号(1+b²)有最大值3√2/4,且满足a>b>0,且a²+½b²=1的要求。a*根号(1+b²)的最大值为3√2/4