如图,向量|OA|=向量|OB|=1。OA与OB的夹角为120°,OC与OA的夹角为30°,且|OC|=5,用OA,OB表示oc

一定要详细,一步一步的,不要跳。不然看不懂啊谢谢了。
2025-06-28 14:11:19
推荐回答(1个)
回答1:

题目倒是不难,就是麻烦,先说解析法:
设OC=xOA+yOB,则:|OC|^2=x^2|OA|^2+y^2|OB|^2+2xyOA·OB=x^2+y^2-xy=25--------(1)
OA·OC=x|OA|^2+yOA·OB=x-y/2=5sqrt(3)/2,即:2x-y=5sqrt(3),即:y=2x-5sqrt(3)---(2)
(2)带入(1)得:3x^2-15sqrt(3)x+50=0,即:(sqrt(3)x-5)(sqrt(3)x-10)=0
即:x=5sqrt(3)/3或10sqrt(3)/3,故:y=-5sqrt(3)/3或5sqrt(3)/3,即:
OC=5sqrt(3)OA/3-5sqrt(3)OB/3=(5sqrt(3)/3)(OA-OB)或:
OC=10sqrt(3)OA/3+5sqrt(3)OB/3=(5sqrt(3)/3)(2OA+OB)-------------------------
数形结合,在单位圆中,设OC‘是OC的单位向量,则在单位圆上,当OC'位于OA与OB
之间时,利用简单几何关系可得:OC'=2sqrt(3)OA/3+sqrt(3)OB/3=(sqrt(3)/3)(2OA+OB)
故:OC=5OC'=(5sqrt(3)/3)(2OA+OB),当OC'不在OA与OB之间时
OC'=sqrt(3)OA/3-sqrt(3)OB/3=(sqrt(3)/3)(OA-OB),故:OC=5OC'=(5sqrt(3)/3)(OA-OB)