做QG⊥BC,连接AF,AP与QF的交点为O
AQ=AP ∠QAE=∠QAP+∠PAE=60+∠PAE ∠PAB=∠BAE+∠PAE=60+∠PAE
∠QAE=∠PAB
AE=AB △QAE≌△PQA QE=PB=4
∠AQO=∠OPF ∠AOQ=∠FOP △AOQ∽△FOP
∠OFG=∠OAQ=60
∠FBE=90-60=30 ∠FEB=∠QFG-∠FBE=60-30=30
∠FBE=∠FEB BF=EF BF=AB*tan30=2√3*√3/3=2=EF
QF=QE+EF=4+2=6
QG=QF*sin60=6*√3/2=3√3