(2+1)(2^2+1)(2^4+1)…(2^32+1)+1的值 上面的方法你掌握的吗? (1+0.5)(1+0.25)(1+1⼀16)(1+1⼀256

2025-06-27 02:43:10
推荐回答(2个)
回答1:

(2+1)(2^2+1)(2^4+1)…(2^32+1)+1
=2^64-1+1
=2^64

(1+0.5)(1+0.25)(1+1/16)(1+1/256)
=(1-0.5)(1+0.5)(1+0.25)(1+1/16)(1+1/256)/(1-0.5)
=(1-0.25)(1+0.25)(1+1/16)(1+1/256)×2
=(1-1/16)(1+1/16)(1+1/256)×2
=(1-1/256)(1+1/256)×2
=(1-1/65536)×2
=2-1/32768
=1又32767/32768

回答2:

(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^32+1)+1
=﹙2²-1)(2^2+1)(2^4+1)……(2^32+1)+1
=﹙2^4-1)(2^4+1)……(2^32+1)+1
=······
=(2^32-1)(2^32+1)+1
=2^64-1+1
=2^64

(1+0.5)(1+0.25)(1+1/16)(1+1/256)
=2*(1-0.5)(1+0.5)(1+0.25)(1+1/16)(1+1/256)
=2*(1-0.25)(1+0.25)(1+1/16)(1+1/256)

=……
=2-1/2^15