已知函数f(x)=(m-3)x3+9x(1求函数区间[1,2]上的最大值为4求m的值

2025-06-26 15:37:07
推荐回答(1个)
回答1:

当m≥3时,f (x)在[1,2]上是增函数,所以[f (x)] max=f (2)=8(m-3)+18=4, 解得m=54<3,不合题意,舍去. ………………………………………………………………………8分 当m<3时,f(x)=3(m-3) x2 + 9=0,得33xm. 所以f (x)的单调区间为:33m,单调减,3333mm,单调增,33m,单调减.

……………………………………10分 ①当323m≥,即934m≤时,33[12]33mm,,,所以f (x)在区间[1,2]上单调增, [f (x)] max =f(2)=8(m-3)+18=4,m=54,不满足题设要求. ②当3123m,即0<m<94时,[f (x)] max3043fm舍去. ③当313m≤,即m≤0时,则3[12]3m,,,所以f (x)在区间[1,2]上单调减, [f (x)] max =f (1)=m + 6=4,m=-2.