∫[(x-3)/(x^2-x+1 )]dx
=1/2∫[(2x-1-5)/(x^2-x+1 )]dx
=1/2∫[(2x-1)/(x^2-x+1 )]d(x^2-x+1)-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-5/2∫/(x^2-x+1 )dx
=1/2ln(x^2-x+1 )-(5√3)/3*arctan[√3*(2x-1)/3]+C
其中:
5/2∫dx/x^2-x+1
=5/2∫dx/[(x-1/2)^2+3/4]
=5/2∫d(x-1/2)/[(x-1/2)^2+3/4]
=5/2*(2/√3)*arctan[(x-1/2)/(√3/2)]+C
=(5√3)/3*arctan[√3*(2x-1)/3]+C