由,Sn的式子,写出Sn-1的表达式,Sn-Sn-1就是an=2^n-2,然后另bn=an=4^n-2,写出Tn的表达,然后再写出4Tn的表达式,然后再错位相减!后面的自己接着写就能得出答案了!记住,数列求和里。错位相减是一个很有用的方法,以后你肯定还会遇到!希望对你有用!
解:由题得:Sn=2^n-1,则S(n-1)=2^(n-1)-1,所以an=Sn-S(n-1)=2^n-1-[2^(n-1)-1]=2^n-2^(n-1),所以an²=[2^n-2^(n-1)]²=2^2n-2*(2^n)*[2^(n-1)]+2^[2*(n-1)]=2^(2n-2)=4^(n-1),所以a1²=4^(1-1)=1,所以Tn=a1(1-q^n)/(1-q)=1*(1-4^n)/(1-4)=(4^n-1)/3