(1*2*3+2*4*6+...........+100*200*300)/(2*3*4+4*6*8+...........+200*300*400)
=[1*2*3*(1+2*2*2+...+100*100*100)]/[2*3*4*(1+2*2*2+...+100*100*100)]
=(1*2*3)/(2*3*4)
=1/4
解:
原式
=[(1*2*3)(1+2+3+……+100)]/[(2*3*4)(1+2+3+……+100)]
=(1*2*3)/(2*3*4)
=1/4
原式=1*2*3*(1+2+3+……+100)/2*3*4*(1+2+3+……+100)
=1*2*3/2*3*4
=1/4
=[1*2*3(1+2+3+…+100)]/[2*3*4(1+2+3+…+100)]
=(1*2*3)/(2*3*4)
=1/4
1/4