数列{an}的前n项和记为Sn,已知a1=1,an+1=(n+2)⼀nSn(n=1,2,3,....).证明:(1)数列{Sn⼀n}是等比数列;

;(2)Sn+1=4an.其中,n+1是下角标
2025-06-26 04:08:08
推荐回答(4个)
回答1:

1、A(n 1)=(n 2)sn/n=S(n 1)-Sn
即nS(n 1)-nSn=(n 2)Sn
nS(n 1)=(n 2)Sn nSn
nS(n 1)=(2n 2)Sn
S(n 1)/(n 1)=2Sn/n
即S[(n 1)/(n 1)]/[Sn/n]=2
S1/1=A1=1

所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列
所以Sn/n的通项公式是Sn/n=1*2^(n-1)
即Sn=n2^(n-1)

那么S(n 1)=(n 1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n*2*2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]*2^(n-2)
=(n 1)2^(n-2)
=(n 1)*2^n/2^2
=(n 1)2^n/4
=S(n 1)/4

所以有S(n 1)=4An

回答2:

(1)a(n+1)=(n+2)/n*SnSn=na(n+1)/(n+2)S(n-1)=[(n-1)a(n)]/(n+1)a(n)=Sn-S(n-1)=na(n+1)/(n+2)-[(n-1)a(n)]/(n+1)2na(n)/(n+1)=na(n+1)/(n+2)2a(n)/(n+1)=a(n+1)/(n+2)2[S(n-1)/(n-1)]=S(n)/n(n>=2)S(n)/n:S(n-1)/(n-1)=2(2)S(n+1)/(n+1)=4[S(n-1)/(n-1)]S(n+1)/(n+1)=4[a(n)/(n+1)]S(n+1)=4a(n)

回答3:

将An=1变为Sn+1---Sn,在取倒,除n的平方

回答4:

(1)a(n+1)=(n+2)/n*Sn

Sn=na(n+1)/(n+2)

S(n-1)=[(n-1)a(n)]/(n+1)

a(n)=Sn-S(n-1)=na(n+1)/(n+2)-[(n-1)a(n)]/(n+1)

2na(n)/(n+1)=na(n+1)/(n+2)

2a(n)/(n+1)=a(n+1)/(n+2)

2[S(n-1)/(n-1)]=S(n)/n(n>=2)

S(n)/n:S(n-1)/(n-1)=2

(2)S(n+1)/(n+1)=4[S(n-1)/(n-1)]

S(n+1)/(n+1)=4[a(n)/(n+1)]

S(n+1)=4a(n)