详细过程如下图,不懂可以继续询问,希望采纳!
∫x(1-x²)dx
令u = x²,dv = (1-x²)dx,则有du/dx = 2x,v = ∫(1-x²)dx = x - (1/3)x³。
根据分部积分公式,积分结果为:
∫x(1-x²)dx = uv - ∫vdu
= x*(x - (1/3)x³) - ∫(x - (1/3)x³)2xdx
= x*(x - (1/3)x³) - ∫(2x² - (2/3)x^4)dx
= x*(x - (1/3)x³) - (2/3)∫(x^4 - x²)dx
= x*(x - (1/3)x³) - (2/3)(1/5)x^5 + (2/3)(1/3)x³ + C
= x - (2/5)x^5/3 + C
因此,原积分的结果为 x - (2/5)x^5/3 + C。其中,C为任意常数。
∫x(1–x²)dx
=∫(x–x³)dx
=1/2 x²–1/4 x^4+C