定积分计算 ∫[0→e^-1] ln(x+1)dx

2025-06-26 23:15:05
推荐回答(1个)
回答1:

原式=∫ln(x+1)d(x+1)
=(x+1)ln(x+1)-∫(x+1)dln(x+1)
=(x+1)ln(x+1)-∫(x+1)*1/(x+1)dx
=(x+1)ln(x+1)-∫dx
=(x+1)ln(x+1)-x [0→1/e]
=[(1/e+1)ln(1/e+1)-1/e]-[1*ln1-0]
=(1/e+1)ln(1/e+1)-1/e