收敛数列的保号性通俗点说,就是如果数列收敛于正数,则从某项往后全都是正数如果数列收敛于负数,则从某项后全都是负数。
收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a| 相关性质 1、唯一性 如果数列Xn收敛,每个收敛的数列只有一个极限。 2、有界性 定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn| 定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。