如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE

2025-06-26 23:38:41
推荐回答(1个)
回答1:

(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC
∴BC⊥平面ABE,∵AE?平面ABE
∴AE⊥BC,
∵BF⊥平面ACE,且AE?平面ABE
∴BF⊥AE,又BC∩BF=B,
∴AE⊥平面BCE,
又∵BE?平面BCE,
∴AE⊥BE.

(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,
∵AD⊥平面ABE,且AD?平面ACD,
∴平面ACD⊥平面ABE,∴EH⊥平面ACD.
由已知及(Ⅰ)得EH=

1
2
AB=
2
,S△ADC=2
2

故VD-ABC=VE-ADC=
1
3
×2
2
×
2
=
4
3