若x+y+z=1,试用换元法证明x눀+y눀+z눀≥1⼀3

2025-06-27 01:48:19
推荐回答(1个)
回答1:

解法一:(换元法)
证明:因为
(x-1/3)^2+(y-1/3)^2+(z-1/3)^2≥0
展开,得
x^2+y^2+z^2-2/3*(x+y+z)+3*1/9≥0
x^2+y^2+z^2-2/3+1/3≥0
x^2+y^2+z^2≥1/3。
其中等号当且仅当x=y=z=1/3时成立
解法二:
因为:x+y+z=1
所以:(x+y+z)²=1
化解为:x²+y²+z²+2xy+2xz+2yz=1
又因为:
x²+y²≥2xy;
x²+z²≥2xz;
y²+z²≥2yz;
所以x²+y²+z²+2xy+2xz+2yz=1<=3(x²+y²+z²)
固x²+y²+z²≥1/3